欢迎来到文档下载导航网!

宁夏六盘山高级中学2020届高三数学下学期第6次周练卷文.pdf

时间:2020-12-10|当前位置:首页 > 教育文档 > 高等教育 > |用户下载:

宁夏六盘山高级中学2020届高三数学下学期第6次周练卷文.pdf


本文档部分文本预览

宁夏六盘山高级中学 2020 届高三数学下学期第 6 次周练卷 文 时间:2020 年 5 月 4 日 16:25—17:05 命题人 班级 _____________ 姓名 ___________ 得分___________ f x  x 2 lnx ax 1.已知函数   . 1 f x  当a  3 时,求  的单调增区间; 2 f x 0,1       a 若 在 上是增函数,求实数 的取值范围. 2.已知函数f (x)  ax ln x (a R) . (1)若a  2 ,求曲线y  f (x) 在x  1处切线的斜率; (2)求f (x) 的单调区间. f x  x 2 ax ln x a R 3.设函数    . f x (1)当a  1时,求函数  的单调区间; 1  f x  ,3  (2)若函数  在3  上有两个零点,求实数a 的取值范围. 4 f x  ax 3 bx 4 f x  4.若函数   ,当x  2 时,函数  有极值 3 . (1)求函数的解析式; (2)求函数的极值; f x  k (3)若关于x 的方程   有三个不同的实数解,求实数 k 的取值范围. 2019-2020 学年高三年级第二学期数学(文)第 6 次周测(解析) f x  x 2 lnx 3x 1.解(1)当a  3 时,   , 1 1 f  x  2x  3 0  x    f ¢ x ) ) 0 所以 x ,由 ( 得, 2 或x  1 ,  1 0, , 1,  f x     故所求  的单调递增区间为 2  . 1 f  x  2x  a   (2)由 x , 1 1 2x  a  0 a  2x  f x 0,1 0,1 ∵  在 ( )上是增函数,所以 x 在 ( )上恒成立,即 x 恒成立, 1 2 2x   2 2 x  a  , 2 2  ∵ x (当且仅当 2 时取等号),所以a  2 2 ,即   . 1 f (x)  2  (x  0) 2.解 (Ⅰ)由已知 x ,  f (1)  2 1 3 .曲线y  f (x) 在x  1处切线的斜率为 . 1 ax 1 f (x)  a   (x  0) (Ⅱ) x x . ①当a  0 时,由于x  0 ,故ax 1 0 ,f (x)  0 所以,f (x) 的单调递增区间为(0, ) . 1 x   ②当a  0 时,由f (x)  0 ,得 a . 1 1 (0,  )  ( , )  在区间 a 上,f (x)  0 ,在区间 a 上f (x)  0 , 1 1 (0,  ) ( , ) 所以,函数f (x) 的单调递增区间为 a ,单调递减区间为 a . f x  x 2 ax lnx a R f x 0,  3.解(1)因为    ,所以函数  的定义域为 , 1 2x 2 x 1 f  x  2x 1    当a  1时, x x , 1 f  x  0 x  令   ,得 2 或x  1 (舍去). 1 1 0  x   x   f x  0 f x  0 当 2 时,   ,当 2 时,   ,  1  1  f x 0,   ,  所以  的单调递增区间为 2  ,单调递减区间为2  . 1  lnx 2 x  ,3 a  x  f x  x ax lnx  0

继续预览文档剩余内容

温馨提示:本页预览文本内容并非错乱,是从文档中提取部分无格式预览!如您需要正常预览文档全文,请点击下方按钮↓↓↓

上一篇:大学室内设计专业职业生涯规划书.docx

栏    目:高等教育

下一篇:宁夏六盘山高级中学2020届高三数学下学期第3次周练卷文.pdf

本文标题:宁夏六盘山高级中学2020届高三数学下学期第6次周练卷文.pdf

本文地址:https://www.365weibook.com/html/20201210/467542.html

    正常预览或下载提示:

    本页面文档预览是由服务器自动提取的部分内容,并不是文档错乱。如您需要预览全文或下载文档,请点击页面左侧(点击去预览文档全文或下载文档)按钮,进行全文预览或下载。

推荐下载

联系我们 | 广告投放 |网站地图

免责申明:本网站不提供任何形式的下载服务,因此与之有关的知识产权纠纷本网站不承担任何责任。

如果侵犯了您的权利,请与我们联系,我们将进行删除处理。